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A study is made of the filling, with a fluid, of a model medium consisting of two 
interacting continua whose interpenetrating pore spaces are formed of pores that 
are roughly identical within the confines of the respective continua. 

Beginning with the well-known study by Beckingham published eighty years ago, the move- 
ment of moisture in soils has traditionally been regarded as a diffusion process with a trans- 
port coefficient (diffusivity) dependent in the general case on moisture content (see [i, 2], 
for example). The most constructive feature of this approach is that it makes it possible 
to describe the empirically observed motion of a relatively steep moisture front at a finite 
velocity. The existence of wave solutions of this type for quasilinear parabolic equations 
was evidently first noted in [3]; the same subject was examined in [4] in regard to moisture 
waves generated by instantaneous sources. 

Despite the fact that the moisture transport equations and the dependence of diffusivity 
on capillary potential and moisture content have been formulated using valid physical argu- 
ments regarding the water-retaining properties of soils, equilibrium conditions, and possible 
moisture transport mechanisms in soils [i], on the whole these equations are basically heuris- 
tic in character. Their solutions do not adequately reflect actual moisture transport pro- 
cesses in general or infiltration in particular. Thus, it has been known for more than two 
decades that the Clute equation and similar equations, if valid at all, are valid only for 
quasisteady processes [i, 5]. The theoretically determined velocity of mositure fronts [4] 
differs appreciably from the velocity seen in experiments [2]. In principle, the solutions 
of these equations cannot explain many features of moisture transport. This includes effects 
associated with capillary "suspension" of liquid, the true distribution of moisture in the 
moistened region, and the dependence of filtration velocity and the motion of the moisture 
front on the initial moisture content of the medium, the hydraulic head, etc. [2]. Thus, 
there is a general impression that the adopted method of describing moisture transport is 
inadequate and that it is necessary to develop new, physically more understandable represen- 
tations and models free of the above shortcomings. 

The pore space of actual soils and other porous media is an extremely complex structure 
from a topological viewpoint. It is usually modeled by representing the pores as constitut- 
ing a system of interconnected capillaries or a system of interstices between close-packed 
particles. The capillaries and particles are assumed to be distributed somehow with respect 
to dimensions and form parameters. The simplest model which considers the difference be- 
tween pores may be an aggregate of two systems of connected capillaries or particle inter- 
stices having their own characteristic structural scales. As a result, the porous medium is 
formally represented as a superposition of two coexisting continua having their own charac- 
teristic values of porosity and permeability and a capillary pressure which is independent 
of saturability. Such a model, similar to that used previously in the theory of filtration 
in cracked-porous media [6, 7], can be employed for an approximate description of granular 
soils. In the latter case, one of the continua is associated with flow through the inter- 
stices between granules, while the other is connected with flow in a system of contacting 
porous granules. The porosity of the first continuum is the volume fraction of interstices, 
while that of the second continuum is the volume fraction of pores in the granules. In a 
first approximation, the permeability of the first continuum is equal to the permeability of 
an analogous system with impermeable granules, while the permeability of the second continuum 
is proportional to the permeability of the material of the granules with a proportionality 
factor dependent on the actual contact area. This area can be evaluated form the model in [8]. 
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For both continua, we assume the validity of Darcy's law 

v i  = - - ( k i / N ( V p i - - p g ) ,  i =  1, 2, (i) 

while the volumetric flow between them, referred to a unit volume of the medium, is described 
by means of the quasisteady relation introduced in [6, 7]: 

q = (a/~) (Pl - -  P~). (2)  

The quantity ~ characterizes the structure of the porous medium; if we are dealing with 
a granular soil, then ~ = Bk/a 2, where k is the permeability of the material of the granules; 
a is their effective size; ~ is the numerical structural coefficient. The pressure undergoes 
a discontinuity equal to Pdi" If the fluid is incompressible, then the following equations 
are valid in regions where both continua are filled with fluid 

k l A P t  - -  a (p~ - -  P2) = O, k~Ap2 - -  a (p~ - -  PO ~ O, ( 3 )  

t h e s e  e q u a t i o n s  hav ing  been o b t a i n e d  in  t h e  u s u a l  manner form (1)  and (2 ) .  I n  t h e  r e g i o n s  
where only one of the continua is filled, we have the usual Laplace equation for pressure in 
it. 

To establish qualitative features of moisture transport within the framework of the pro- 
posed model, we will examine simple unidimensional problems concerning infiltration from a 
horizontal surface. The situation depicted in Fig. i corresponds to the downward flow of 
moisture from a free surface covered by a layer of water. The boundary conditions on the 
surface and the moisture fronts z = h i have the form 

Pi = Po, z = O; Pi = - - P ~ i ,  z = hi, i = 1, 2 (4)  

(positive Pgi correspond to the wetting fluid). 

For the sake of definiteness, we will number the continua so that h 2 > h I. Then, at z = 
hx, we should impose the conditions of continuity of the function P2 and its derivative with 
respect to z. If the fluid wets the material, then capillary forces assist its transport 
from the continuum with coarse pores to the continuum with fine pores. Thus, in this case 
the number i = 2 should probably be assigned to the last continuum. 

The solution of the problem, following from (3) and (4) in the region 0 < z < h x - 
where the fluid fills all of the pores - has the form 

p~=_p~+(po+pc~)[ 1 sh(Ez) I [ z sh(~,z) ] 
sh(~h 0 - -R  h~ sh(~hi) ' 

p~=po+(po+p~O k~ sh(%z) [_~ k~ sh(~,z) ] 
k~. sh (~h~) R -+ k 2 sh (;~h 0 ' 

~.~ = e (k~ + k~) (klk~) -~. 

(5) 

The downward filtration velocities in the porous continua are obtained from (i) and (5): 

kl { ch(%z) [ I ch(%z) j} 

h 1 sh (;Lhl) 

k= { kl ch(s ) [ 1 kl ch()~z) ] } 
vo. = ,  0 g - -  (po + po0 ~ ko sh (~hl) + R ~ + (6) 

The filtration velocity, representing the volumetric flow of water into a porous medium 
per unit area of the free surface, is equal to 

vo = v~ I~=o + v~ l~=o. (7 )  

The velocities of the moisture fronts in the continua (i.e., in the different-size pores) 
are expressed as: 
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Fig. i. Diagram of the penetration of mois- 
ture into pores represented by continua i and 
2 (the moistening region is hatched) and dia- 
gram of the volumetric content of moisutre w 
in soil (dashed curve shows the typically- 
observed moisture distribution). 

dh, 1 
u~ - - - -  v i  l~=h, .  ( 8 )  

dt e~ 

The relations obtained here describe the dynamics of infiltration with an accuracy R, 
which is a certain implicit function of time. To determine it, we need to solve the Laplace 
equation for P2 in the region hz < z < h 2 - where only the second continuum is filled - and 
we need to use two continuity conditions at z = hz and the pressure discontinuity condition 
at z = h 2 from (4). As a result we obtain 

{ kl§ kl ) }_1 
R =  1 + k~ ~ + ~ k 2 cthx (h 2 - h l )  • 

• {Po + p~o + (no + P~O(kJk~)[I + ~(h~--h~)cfhx]}, x = ~h~, ( 9 )  

which finally determines fields (5) and (6). To find the functions hi(t), Eqs. (6), (8), 
and (9) readily yields a system of ordinary differential equations which we will write for 

dimensionaless coordinates of the fronts x = lhz and y = lh=: 

dx 

dt 

d___f__y =B[ 
dt 

S =  

A - -  Pg~'kl , B 

- -  = A[1 + H ~ c t h x + S ( 1 - - x c t h x ) ] ,  

] H1 c t h x + S  ( 1  + x.... c t h x / ]  ' 
y \ y l J  ' 

s 

?H2 + H1 [ 1 + (y - -  x) cth x] 
1 + y  + (y - -  x) (y + x cth x) ' 

k2 Po + P~ 9gyk~ 2 = - - ,  H~ = )~ , i =  1, 2. 
~2~ ' kl Pg 

(i0) 

These equations completely describe the dynamics of the moisture fronts; in the general 
case, they must be solved by numerical means. Here, we will examine mainly two types of 
asymptotic motion of the fronts: when x and y increase without limit as t + ~, so that the 
difference y - x remains finite; when only y § = as t + ~, while x approaches a finite limit. 

In the first case, if we take (i0) and ignore terms proportional to negative powers of 
x and y, we obtain: 

dx -- A (1 yH~ -~ H] ) @ = B ( I @  YH2 + H~ ~ 
dt g - -  x , '  dt ~ (y - -  x) ] 
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and further 

d(y--x) = B - - A + ( A +  B ) y H ~ - - H ~  
dt %, y -- x 

It follows from this that one of the moisture fronts leads the other front by the dimension- 

less distance 

lira (y - -  x) = (y - -  x), = (%,H 2 + H 0 
~ A--B 

A + B/y 

If kiHx + k2H2 > 0, then the leading front is that in the continuum for which the quan- 
tity ki/e i is lower (It is necessary that A > B). If the reverse inquality is satisfied, 
then the front in the continuum with the higher value of ki/e i leads. 

In dimensional variables, we have the following for the asymptotic distance between the 

fronts 

(h2 - -  h~), = 8x - t  8~ R~ {Po + PcO + k~ (Po + Pe~) ( 1 1 )  
k?~--k#l Pg 

to: 
The asymptotic infiltration velocity and asymptotic velocities of the fronts are equal 

kl + k, Pg = (~1 + ~,2) u,. (12) 
U ,  ~ U~,  ~ - - ~  ~)0* 

81 + % 

The independence of these velocities on time means physically that after a certain amount 
of time has elapsed since the beginning of infiltration, the effect of capillary phenomena 
and the hydraulic head on the free surface becomes negligible compared to the effect of 
gravity. 

Leaving only terms of the principal orders with respect to y - x % y in (i0), we obtain: 

dx = A l l + H 1  ( l + %,) cth x ] 
dt %, + x cth x ' 

d9 = B {  1+ 1 [ H2 %, ( y - t - x c t h x  )]}" dt -V- + Hi i (1 + %,) c thx  

It follows from the first equation that the regime being examined is possible at negative 
HI, when x(t) asymptotically approaches x, as t + ~. Here, x, is the root of the equation 

c t h x ,  = 1 H =  [Hli(1 +%,). ( 1 3 )  
% , + x ,  c t h x ,  H ' 

At small y, we have 

X , , ~ , H  H hl * ~ IPo+Pel[ ( 1 4 )  
Pg 

Figure 2 shows the dependence of x, on H and y. Using (13), we then find 

( .1+,..11 - - ~  = B  1 +  
, YY , 

It follows from this that at H I + yH 2 < i the moisture front in the second continuum also 
asymptotically approaches the steady state 

h~, --  Y_..Z_* go 1 - -  H 1 - -  yH~ 
- ~, y.= = (15) 

? 
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Fig. 2. Dependence of x, on H -l with different u 

Fig. 3. Dependence of y,/yO on x = (B/y~ in accordance with 
(16) and (17) (curves 1 and 2, respectively). 

At Hz + YH2 > i, the front in the second continuum goes to infinity in accordance with 
the law 

y.  _ yO In (t + y./yO) = Bt, (16) 

where yO was determined in (15). Examining the limiting expressions of this law at values 
of y,/yO much greater and much less than unity, we find it reasonable to propose that y@ be 
determined from an approximate formula based on the superposition of these expressions (see 
Fig. 3): 

g, ~-, (2y~ I/2 + Bt, (17)  

which in dimensional variables takes the form 

h2, ,~ M -I /Y+ Nt, N = pgk2 
85,1~ ' 

�9 t~J: {~s I [kl(  ~--~ --Po--Pci)--]~(Po'Jf--Pc~)]}l/2" 

( i s )  

The infiltration velocity in the asymptotic regime being examined is calculated by means 
of (6) and (7): 

( ,+  M, cthx, (19) Oo---- 
I~ \ ? + x.  cth x. / 

Equation (15) (and the corresponding regime) may only be of formal value, since the in- 
equality y >> x needed to obtain the formula is not satisfied in this case. Thus, we should 
example only those situations when H I + yH 2 > I. 

For a nonwetting liquid (negative Pdi), the quantity H l may be less than zero at positive 
h0 and P0 = pgh0 if P0 < IPdi[" This permits a unique physical interpretation. Together with 
the requirement HI + yH= > I, this leads to the condition 

I t  i s  c l e a r  f rom t h i s  t h a t  P0 > IPc21 i n  any case, i . e . ,  t h e  m o i s t u r e  f r o n t  f o r  t he  nonwe t t i ng  
liquid is estabished in the continuum associated with the fine pores and it continues its 
movement in the coarse pores. In granular soils, this corresponds to flow in the interstices 
between granules. 

For a wetting liquid, Pci are positive, and H I can be negative only at negative P0 corres- 
ponding not to a head but to a certain negative pressure on the free surface. In this case, 
the front stops moving in the coarse pores and moves in accordance with (16) in the fine pores. 
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The physical interpretation of processes with negative P0 is not entirely clear. One could 
hope to formally connect the value of P0 with the infiltration velocity - which can be 
assigned for a number of physical problems. However, in accordance with (19), infiltration 
velocity turns out to be independent of P0. This means that the actual motion of moisture 
in the present case occurs while even the fine pores are unsaturated. The proposed model of 
a medium with dual porosity cannot be used to describe moisture transport under conditions of 
partial saturation, since it regards each continuum as being either saturated or unsaturated. 
(The characteristic moisture distribution is shown in Fig. i.) However, although a more 
realistic model of a porous medium with a continuous pore-size distribution must be used to 
analyze the current situation, the result obtained here is an indication both of the general 
direction of development of the process and of the direction of necessary generalization of 
the proposed theory. 

We emphasize that, as follows from the results, two mutually exclusive scenarios of 
development of the moistening process are possible at HI < 0. In the first of them, both 
fronts propagate without limit. In the second scenario, one of the fronts is stopped. The 
practical realization of one of these cases evidently depends on the initial conditions for 
h i . In principle, the critical conditions corresponding to the shift in regimes can be found 
by solving Eq. (i0) numerically. Physically, this means that given a sufficient depth of 
penetration of the moisture fronts, the weight of the liquid column in the pores will ensure 
its further downward movement. 

Following the same reasoning, it is not hard to envision the propagation of the moisture 
upward from a submerged surface (as occurs in subsurface irrigation) and in the horizontal 
direction. In the first case, it is necessary to replace g by -I~, while in the second case 
we take g = 0. In the case of upward propagation of mositure, at t + ~ the fronts approach 
steady states usually determined by hydrostatic equilibrium conditions with the involvement 
of forces associated with capillarity, gravity, and the pressure head. In the case of hori- 
zontal transport, either one or both fronts move away from the source in accordance with a 
parabolic law. 

Let us briefly discuss the agreement between the results obtained here and experimental 
findings. Moisture-content diagrams such as the one shown inFig. I by the dashed line have 
long been seen [9, i0] and are modeled fairly well within the framework of the present model 
by diagrams with moisture-content discontinuities. A semi-empirical formula identical in 
structure to that in (18) was also first proposed many years ago. In accordance with numer- 
ous experimental results such as those in [2], the limiting velocity of the front from (12) 
(or N from (18)) increases with an increase in initial moisture content. Meanwhile, infil- 
tration velocity decreases in this case. The theory is consistent with the observations. 
In fact, the increase in the initial moisture content of the medium can be interpreted as a 
reduction in the effective porosity e 2 and, thus, in k 2. For example, for a wetting liquid 
in granular soil, k I >> k 2 and e 1% e~, i.e., u, from (12) actually increases and vo, de- 

creases with an increase in the initial moisture content of the granules. Also, in agree- 
ment with observations [21] is the dependence of the "sorptivity" M from (18) (to use the 
terminology in [2]) on the hydraulic head and capillary forces. 

NOTATION 

A, B, H i, parameters introduced in (i0); g, acceleration due to gravity; hi, coordinates 
of the moisture front; ki, permeability coefficients; M, N, parameters in (18); Pi, pressure; 
Pci, capillary pressure; P0, pressure at the surface-source; q, volumetric flow of fluid from 
the first continuum into the second; R, S, quantities determined in (9) and (i0); t, time; 
ui, velocities of the fronts; vi, filtration velocities; v0, infiltration velocity; x, y, 
dimensionless coordinates of the fronts; z, vertical coordinate; ~, exchange coefficient in- 
troduced in (2); ei, porosity; k, parameter determined in (5); ~, viscosity; p, density. 
The subscripts i and 2 denote quantities pertaining to the different continua; * denotes 
asymptotic values of the variables. 
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INVESTIGATION OF DYNAMIC CHARACTERISTICS OF A GLOW 

DISCHARGE IN GAS FLOWS 

V. N. Karnyushin, E. I. Shirokov, and 
S. V. Shushkov UDC 621.378.324 

Stability of the gas-discharge-supply circuit system relative to current fluctuations 
is examined. The estimates are in agreement with investigations of a glow discharge 
in an air flow. 

i. The stability of stationary flow discharge (GD) combustion must be assured for techno- 
logical applications since current and voltage fluctuations result in reduction in the effi- 
ciency of the GD installation [i]. The fluctuations are due to voltage oscillations in the 
supply source, in parasitic capacitances and inductances of the loop, and also in the 
development of plasma instabilities in the discharge itself [1-3]. Hence, the stability of 
GD combustion or the damping of current fluctuations are governed by the whole discharge- 
supply loop system. 

To produce optimally efficient and stable gas-discharge installations the dependence of 
the nature of the fluctuation on the GD maintenance circu:it must be established theoretically 
and from experiments. 

The simplest loop contains an emf source e and a ballast resistance R b connected in 
series with the GD (Fig. i). A "static" current-voltage characteristic (CVC) obtained ex- 
perimentally by varying e and recording the discharge voltage U and current i is used in the 
stability analysis. It follows from a classical examination [4-7] that the GD should combust 
stably if 

R b > Iri, (1) 

L >  Rblrl C, (2) 

where L is the inductance connected in series with the GD, C is the capacitance in parallel 
with the GD, r is the GD differential resistance (DR) equal to the slope of the tangent to 
the CVC at the working point under consideration r = dU/di. 

The necessary condition (i) denotes that as the CVC (r > 0) grows the GD is always stable 
and the oscillations in the GD-supply loop system are quenched while for a drooping CVC (r < 
0) the load line corresponding to the equation e = IR b + U should pass more steeply than the 
tangent to the CVC at the working point. Satisfaction of conditions (i) and (2) is sufficient 
for damping the fluctuations. 

Condition (i) and (2) correctly describe the excitation and quenching of oscillation 
within the framework of the circuit taken, however, their application in this form to esti- 
mate the specific gas discharge system is made difficult since dynamic fluctuations always 
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